Phase behavior and 3D structure of strongly attractive microsphere-nanoparticle mixtures.
نویسندگان
چکیده
We investigate the phase behavior and 3D structure of strongly attractive mixtures of silica microspheres and polystyrene nanoparticles. These binary mixtures are electrostatically tuned to promote a repulsion between like-charged (microsphere-microsphere and nanoparticle-nanoparticle) species and a strong attraction between oppositely charged (microsphere-nanoparticle) species. Using confocal fluorescence scanning microscopy, we directly observe the 3D structure of colloidal phases assembled from these mixtures as a function of varying composition. In the absence of nanoparticle additions, the charged-stabilized microspheres assemble into a polycrystalline array upon sedimentation. With increasing nanoparticle volume fraction, nanoparticle bridges form between microspheres, inducing their flocculation. At even higher nanoparticle volume fractions, the microspheres become well coated with nanoparticles, leading to their charge reversal and subsequent restabilization. We demonstrate how this fluid-gel-fluid transition can be utilized to control the morphology of the colloidal phases formed under gravity-driven sedimentation.
منابع مشابه
Size ratio effects on interparticle interactions and phase behavior of microsphere-nanoparticle mixtures.
We investigate the interparticle interactions and phase behavior of microsphere-nanoparticle mixtures of high charge asymmetry and varying size ratio. In the absence of nanoparticles, negligibly charged microspheres flocculate as a result of van der Waals interactions. Upon addition of a lower critical nanoparticle volume fraction, the microspheres are stabilized by the formation of nanoparticl...
متن کاملInterparticle interactions and direct imaging of colloidal phases assembled from microsphere-nanoparticle mixtures.
We investigate the interparticle interactions, phase behavior, and structure of microsphere-nanoparticle mixtures that possess high size and charge asymmetry. We employ a novel Monte Carlo simulation scheme to calculate the effective microsphere interactions in suspension, yielding new insight into the origin of the experimentally observed behavior. The initial settling velocity, final sediment...
متن کاملPhase Behavior , 3 - D Structure , and Rheology of Colloidal Microsphere – Nanoparticle Suspensions Summer K . Rhodes and Jennifer A . Lewis
A new route for tailoring the behavior of colloidal suspensions through nanoparticle additions is reviewed. Specifically, the interparticle interactions, phase behavior, 3-D structure, and rheological properties of microsphere–nanoparticle mixtures that possess both high charge and size asymmetry are described. Negligibly charged microspheres, which flocculate when suspended alone, undergo a re...
متن کاملElectrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures.
We explore the generality of nanoparticle haloing as a novel colloidal stabilization mechanism in binary mixtures of silica microspheres and polystyrene nanoparticles. By selectively tuning their electrostatic interactions, both the initial microsphere stability and the role of nanoparticle additions are varied. Adsorption isotherm and zeta potential measurements indicate that highly charged na...
متن کاملNanoparticle-mediated epitaxial assembly of colloidal crystals on patterned substrates.
We have studied the assembly of 3-D colloidal crystals from binary mixtures of colloidal microspheres and highly charged nanoparticles on flat and epitaxially patterned substrates created by focused ion beam milling. The microspheres were settled onto these substrates from dilute binary mixtures. Laser scanning confocal microscopy was used to directly observe microsphere structural evolution du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 21 24 شماره
صفحات -
تاریخ انتشار 2005